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well into account the radiation correction to the
p-decay constant found by Berman 3) and Kino-
shita and Sirlin 4) we obtain for the muon life
time
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where 7,0 is the muon life time calculated by
means of universal theory of four fermion inter-
action with a constant taken from g-decay without
any corrections, Ag is the cut off momentum due

1

to the strong interactions, Ag~ M, E is the en-
ergy of g-transition. Accord"ng to experimental
data T“/T”_o = 0.988 + 0.004.

Substituting the numbers into (1) we obtain
r,/7,0 =1.003 and the disagreement between
the theory and experiment will be in our case
1.5 + 0.4%. When discussing this result one shoulq
take into consideration that in (1) only the terms
~ ¢2 In e~2 were correctly taken into account but
the terms ~ 2 were discarded.

It seems to us that the conclusion that in the
theory of weak interaction with intermediate W-
meson - and p-constants must be with good ac-
curacy the same (taking into account the correc-
tions due to the electromagnetic and weak inter-
actions), is in favour of the weak interaction the-
ory with W-meson unlike the four-fermion theory,

More detailed paper will be published else-
where.

The author is indebted to B. V. Geshkenbein,
1. Yu. Kobsarev, L.B.Okun, A.M. Perelomov,
I. Ya. Pomeranchuk, V.S. Popov, A.P.Rudik and
M. V. Terentyev for valuable discussions.
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Recently a number of %eople have discussed
the Goldstone theorem 1,2): that any solution of a
Lorentz-invariant theory which violates an inter-
nal symmetry operation of that theory must con-
tain a massless scalar particle. Klein and Lee 3)
showed that this theorem does not necessarily ap-
ply in non-relativistic theories and implied that
their considerations would apply equally well to
Lorentz-invariant field theories. Gilbert 4), how-
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ever, gave a proof that the failure of the Goldstone
theorem in the nonrelativistic case is of a type
which camnot exist when Lorentz invariance is im-
posed on a theory. The purpose of this note is to
show that Gilbert's argument fails for an impor-
tant class of field theories, that in which the con-
served currents are coupled to gauge fields.4
Following the procedure used by Gilbert ), let
us consider a theory of two hermitian scalar fiel
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@1(x), ©9(x) which is invariant under the phase
transformation

Y1 " @pcosa+@gsina,
(1)

@y —-pp Sin a + pgcos « .

Then there is a conserved current j " such that

L[S @3 Go(), @1(0] = 050, @)

We assume that the Lagrangian is such that sym-
metry is broken by the nonvanishing of the vacuum
expectation value of ¢9. Goldstone's theorem is
proved by showing that the Fourier transform of
i{[7 ), ©1(9)]) contains a term
2ﬁ((p2)e(}eo]kM 6(k2), where %, is the momentum,
as a consequence of Lorentz-covariance, the con-
servation law and eq. (2).

Klein and Lee 3) avoided this result in the non-
relativistic case by showing that the most general

form of this Fourier transform is now, in Gilbert's

notation,
F.T. = k#pl(k2, i'ele')-w:tJu pz(fez, nk)+C3nu ﬁq(fe) ,

where n,,, which may be taken as (1, 0, 0, 0), ®)
picks out a special Lorentz frame. The conver-
sation law then reduces eq. (3) to the less general
form

F.T. = kH_ ﬁ(kg)p4(nk)+[f32nu - k,u (nk)]ps (kz, nk)

+Can,, 64(%) (4)

It turns out, on applying eq. (2), that all three
terms in eq. (4) can contribute to (¢9). Thus the
Goldstone theorem fails if P4 =0, which is pos-
sible only if the other terms exist. Gilbert's re-
mark that no special timelike vector » . is avail-
able in a Lorentz-covariant theory appears to rule
out this possibility in such a theory.

There is however a class of relativistic field
theories in which a vector %, does indeed play a
part. This is the class of gauge theories, where
an auxiliary unit timelike vector ny, must be in-
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troduced in order to define a radiation gauge in
which the vector gauge fields are well defined
operators. Such theories are nevertheless Lo-
rentz-covariant, as has been shown by
Schwinger 5). (This has, of course, long been
known of the simplest such theory, quantum elec-
trodynamics.) There seems to be no reason why
the vector » | should not appear in the Fourier
transform under consideration.

It is characteristic of gauge theories that the
conservation laws hold in the strong sense, as a
consequence of field equations of the form

jju. - aUFr,uu’

Fu) =0, A -a,A,". (5)

Except in the case of abelian gauge theories, the
fields A,', I, " are not simply the gauge field
variables Ay, I}y, but contain additional terms
with combinations of the structure constants of
the group as coefficients. Now the structure of
the Fourier transform of i[A " (x), ©1(»)]) must
be given by eq. (3). Applying eq. (5) to this com-
mutator gives us as the Fourier transform of
i(gfu(x), ©1()]) the single term

[kén), - ko), (nk)] p(k2, nk). We have thus exorcised
both Golcilstone's zero-mass bosons and the
"spurion'' state (at k,, = 0) proposed by Klein
and Lee.

In a subsequent note it will be shown, by con-
sidering some classical field theories which dis-
play broken symmetries, that the introduction of
gauge fields may be expected to produce qualita-
tive changes in the nature of the particles de-
seribed by such theories after quantization.
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